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ABSTRACT 

Land-use feature detection is one of the hot 

applications of GIS (Geographic Information 

System). With satellite imagery as the forefront 

source of updated geographical data, we can use it 

to observe the land-use feature change and keep up 

with the latest changes with minimal effort and 

maximum efficiency. Already, many parties have 

started deriving and working on different 

methodologies to achieve this goal. Some of the 

approaches use the algorithms of Machine 

Learning and the performance level achieved are 

quite satisfactory. In this paper, we have explored 

some of the Machine Learning based approaches 

(Random Forest, XGBoost, U-Net, Artificial 

Neural Network) for land-use feature detection. We 

have used the online platform, google colab and 

online storage google drive to train our model and 

perform the prediction.  

Keywords 

Land use features, Satellite Imagery, Machine 

Learning, Deep Learning, Random Forest, 
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I. INTRODUCTION 
Popularity and demand for location based 

applications are increasing daily. The domain of 

GIS (Geographical Information System) has seen a 

wide range of developments in the recent time. 

With easy access to the vast amount of geo-spatial 

satellite data, many new applications have now 

been possible. The processes that required manual 

survey and analysis of the land now can be 

performed remotely and frequently with the help of 

satellite data. In this paper, we have tried to put 

forward some methods for one such application. 

 The term “Land-use” refers to the management 

and modification of natural environment or 

wilderness into built environments such as 

settlements and semi-natural habitats such as arable 

fields, pastures, and managed woods[1]. So in-short 

the land-use features refers to how a particular 

piece of land is being managed or utilized. The 

study of the land-use features is very important as it 

helps us understand the way how the world has 

been adapted to our needs and in what patterns. 

This will also help us to predict any future 

consequences that may take place due to our course 

of actions. Based on some basic characteristics, the 

land use features have been categorised into many 

different categories. Some of them include : 

Recreational, Agricultural, Impervious, Residential, 

Commercial, etc. 

 

In this paper, we have restrained ourselves to 

detecting a limited number of land-use features due 

to some of our resource constraints. 

 

II. OBJECTIVES 
The primary objective is to propose and 

implement some machine learning models to detect 

different land-use features and present their 

performance levels. The training process requires 

high-end hardware and therefore we have used the 

online platform google colab (RAM : 

12.72GB,GPU backend)[2] for the purpose. For 

storing purposes, we have used google drive, by 

linking it to the google colab platform. 
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III. TOOLS & METHODOLOGY 
Tools: 

● Coding Platform : Google Colab [2] 

Google Colab provides a jupyter notebook like 

interface to run python scripts. 

● Storage : Google Drive [3] 

 

Methodologies : 

In our study, we have explored and used 

four Machine learning based approaches. These 

approaches are discussed in detail in the next 

section. For pre-processing and  implementing the 

models, we have used different libraries which are 

listed along with the models in the next section. 

Some of the standard libraries are pre-installed in 

the google colab environment while others are 

required to be manually installed at the start of the 

session. The installation and all the relevant points 

has been covered and explained in the following 

sections. 

 

NOTE: The full code for the implementation of the 

models are not mentioned in this paper. But the 

links for the code are provided in the corresponding 

sections and some code snippets are mentioned 

along with their explanation. 

 

Model Concept and Architecture : 

This section of the paper aims at providing a 

conceptual view to the readers regarding the model 

architectures that are going to be used for land-use 

feature detection. 

 

I. The U-Net Architecture: 

The U-Net architecture was first designed 

and applied in the year 2015 to process biomedical 

images [5]. The model performed semantic 

segmentation on the bio-medical images, localizing 

the area of abnormality. But this network 

architecture didn’t remain exclusive to the 

biomedical field only. Basically it is an image 

segmentation model, i.e. the model group together 

the pixels that have similar attributes[4]. It creates a 

pixel-wise mask for each object present in the input 

image. In a way, we can say that the model 

performs classification on every pixel of the input. 

Currently, U-Net is counted among the best models 

for semantic segmentation and is commonly used 

on satellite images. 

 

Some of the basic characteristics of the model are: 

● The input and the output shape of the image 

remains the same. 

● The architecture is of U-shape and is 

symmetric (this point will be clarified in the 

later part of this section). 

● The network is strong enough to predict well 

based on even few data sets by using excessive 

data augmentation techniques. 

 

Diving deep into the architecture, below is a 

diagrammatic representation of the U-Net 

architecture. The U-Net is a Fully Convolutional 

architecture, i.e. there are no dense/fully connected 

layers in the model architecture. 
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The above diagram shows the model’s 

basic foundation. As can be clearly seen, the U 

shape of the network and hence the name, U-Net. 

The architecture is fully symmetrical and can be 

divided into 2 parts: the contracting path and the 

expanding path. The left part of the model, also 

known as the contracting path is responsible for 

feature extraction from the input. The left part is 

constituted by the general convolution process and 

max pooling. Whereas the right part of the network 

also known as the expanding path is constituted by 

a number of upsampling processes (transposed 2d 

convolutions) and convolution layers. The right 

part of the network makes sure that once the 

features are identified by the left part of the 

network, it is scaled up to the original input size. 

The contracting and the expanding paths are also 

connected via the skip connections. These skip 

connections help in preserving the shape data of 

different objects present in the image. The network 

combines information from the 

downsampling/contraction path with the contextual 

information in the upsampling/expanding path to 

finally obtain a general information combining 

localization and context, which is necessary to 

predict a good segmentation map. 

 

Model Overview: 

This U-Net based model takes in a 3 bands (RGB) 

input and outputs a binary mask 

localizing the buildings in the image. 

Dataset: 
The dataset contains a set of aerial images. 

These images were collected with the help of 

drones and are available in png format. 

Corresponding to every aerial image, there is a 

binary mask file in the label folder that highlights 

the buildings present in the image. This dataset that 

we have used for training the model is not satellite 

data but rather a colored aerial image. But we were 

still able to predict on the satellite images 

considering only the RGB bands. 

 

Libraries: 

- Numpy  - Rasterio  - 

Matplotlib  - Os 

- Skimage  - Fastai 

 

All the libraries are installed in the google 

colab environment by default except the rasterio 

library. This can be installed by executing the 

following command : 

!pip install rasterio 

 

The Training Process: 

The whole process of training the model 

can be divided into several stages. The first stage is 

the pre-processing stage. In the pre-processing 

stage, we split the whole dataset into training and 

testing data sets and apply data augmentation 

operations on it. 

 

In the next stage, we define the model and 

start the training. For this model, we have used the 

fastai library. The U-Net model is already 

implemented in fastai library and we can also 

define the architecture on which the U-Net 

architecture will be based on. 

learn = unet_learner(data, models.resnet34, 

metrics=metrics) 

This creates a unet architecture based on the resnet 

model. For the metrics part, we can define our own 

metrics or use predefined functions. 

 

For training the model, we will use the 

fit_one_cycle() function. This function uses large, 

cyclical learning rates to train models significantly 

quicker with higher accuracy. When training Deep 

Learning models with Fastai it is recommended to 

use the fit_one_cycle() method, due to its better 

performance in speed and accuracy, over the fit() 

method.Instead of using a fixed, or a decreasing 

learning rate, the CLR method allows learning rate 

to continuously oscillate between reasonable 

minimum and maximum bounds. 

learn.fit_one_cycle(13, max_lr=lr,  

                    callbacks=[ 

                        SaveModelCallback(learn, 

                                                 monitor='dice', 

                                                 mode='max', 

        name='20190108-rn34unet-comboloss-alldata-

512-best') 

           ]                   ) 

The Prediction Process: 

The process of prediction follows a similar 

sequence of stages as in the training process. For 

the pre-processing part, we divide the whole input 

into tiles of size of the UNet input layer.The 

prediction will be performed on the tiles and the 

prediction output is stitched together. 

The prediction is performed by the following 

function: 

def get_pred(learn, tile): 

    t_img = Image(pil2tensor(tile,np.float32)) 

    outputs = learn.predict(t_img) 

    im = (outputs[2][1]).numpy() 

    return im 

 

The final prediction when overlaid upon the input 

gives the following output: 
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II.  Random Forest: 

Random forest is a type of supervised 

learning algorithm. It is an ensemble of decision 

trees, usually trained with the bagging method (the 

general idea of the bagging method is that a 

combination of learning models increases the 

overall accuracy of the result). Random forests are 

an ensemble learning method for classification, 

regression, and other tasks that operate by 

constructing a multitude of decision trees and each 

individual tree outputs a class prediction and the 

class with the most votes. The key in the model of 

random forests is the low correlation between the 

individual constituent decision tree models. This 

ensures that the trees protect each other from 

individual errors. The Bagging (Bootstrap 

Aggregation) process ensures that the models are 

trained on different sets of data which leads to 

diversification of each individual constituent 

model. Along with different training data sets, 

feature randomness is also ensured (trees use 

different features to make 

decisions). 

 

Model Overview: 

The model is based on the random forest 

algorithm. It takes in a 5 band (B1, B2, B3, B4, B5 

of Landsat 8 data) input and outputs the vegetation 

cover label for the input data. The output labels for 

this model are classified into the 5 classes : No 

Vegetation, Bare Area, Low Vegetation, Moderate 

Vegetation, High Vegetation. 

 

Dataset: 

The dataset to train this model was prepared by us. 

We used the concept of NDVI 

(Normalised Difference Vegetation Index) 

to get the vegetation cover labels. For Landsat 8 

data, NDVI is calculated using the band 5 (Near 

Infrared Band) and band 4 (Red band). Once we 

calculated the NDVI for each pixel, we binned the 

NDVI values into 5 bins. The NDVI values only 

ranges from 0 to +1 but we included the infinity 

values, since we replaced the missing data with 

large numeric values.So we downloaded the 

Landsat 8 data and performed the above process to 

get the labelled training data from the original data. 

 

Libraries: 

- Os  - Numpy   

 - Matplotlib   

- Glob  - Sci-kit learn (Sklearn) - 

Earthpy 

- Pickle - Rasterio 
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All the required libraries are installed in the google 

colab environment by default, only the earthpy and 

rasterio libraries are needed to be manually 

installed at the start of the session by executing the 

following commands: 

!pip install earthpy 

!pip install rasterio 

 

The Training Process: 

For the implementation of this model, we 

have to first construct the training data. We 

have used the concept of NDVI to label the data. 

The Earthpy library provides a number of useful 

functionalities to do the processing. First we get the 

Landsat 8 data. The Earthpy library provides a 

function to do that. Then we list out the paths of the 

geo-tif files (for the individual bands) and stack 

them into a single unit. We have replaced the 

missing data fields with -9999. 

arr_st, meta = es.stack(list1, nodata=-9999) 

Now the NDVI is calculated using the band 4 (the 

red band) and band 5 (the near 

infra-red band): 

 
Then we categorised the ndvi values using the 

process of binning. All the steps till now constitute 

the data preparation part. 

Next we split the data into training and 

testing sets and train the model. For selecting the 

number of estimators for our model, we have 

plotted the oob score v/s number of estimators 

graph. And from the graph we get an optimal 

outcome at a number of estimators around 200.  

Then we train our model using the following set of 

code: 

# Initialize our model with 200 trees 

rf = RandomForestClassifier(n_estimators=200, 

oob_score=True) 

# Fit our model to training data 

rf.fit(X_train[:800000], y_train[:800000]) 

 

The Prediction Process: 

So for the prediction, we load the geo-tif files and 

we stack them and reshape them. The prediction is 

performed using the following code snippet: 

 class_prediction = rf.predict(x_test01) 

 

The output of the model is of the following form: 

 
 

III.  Artificial Neural Network: 

Artificial neural networks/neural 

networks/feed-forward networks are a 

system/network of computing units connected 

together, arranged in a layer. The computing units 

constituting the neural network are known as 

neurons. And the connections between the neurons 

are characterized by a weight value. During the 

training of the model, the weight values are 

updated such as to reach an optimal configuration 

such that the difference between the model output 

and the actual result is as small as possible. This is 

achieved via various optimization algorithms such 

as backpropagation. Here in the above figure, we 

can see that every neuron of the previous layer is 

connected to each neuron of the next layer. Such a 

type of configuration is called a fully connected 

layer or a dense layer. There are other types of 

layers available such as a convolutional layer that 

performs the convolutional operation on the input 

or a max-pooling layer that performs the 

downsampling operation. It totally depends upon 

the designer as well as the objective, the model is 

trying to achieve. 

 

Model Overview: 

This model takes in a satellite image and 

identifies the built-up surfaces. By built-up 

surfaces, we refer to the part of the earth’s surface 

that is covered by man-made/artificial surfaces. 

 

Dataset: 

The Dataset is a labelled tif file. It is 

Landsat 5 data containing information from the 6 

bands (B1, B2, B3, B4, B5, B6, B7). The data was 

annotated for the built-up areas. For the testing 

part, we have the Landsat 5 data. 
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Libraries: 

- Pyrsgis    - Numpy 

 - Tensorflow (Keras) 

- Sci-kit learn (Sklearn)  - Raterio 

 - Matplotlib 

- Glob     - Os

  

 

All the required libraries are installed in the google 

colab environment by default, only the pyrsgis and 

rasterio libraries are needed to be manually 

installed at the start of the session by executing the 

following commands: 

!pip install pyrsgis 

!pip install rasterio 

 

The Training Process: 

The purpose of the pre-processing step is 

to read in the raw Landsat 5 band data and format it 

into numpy arrays, which are easy to manipulate 

and process. In our program, we have used the 

pyrsgis library to handle the pre-processing 

operations during the training phase. So, first we 

read in the tif files using the pyrsgis’s raster.read() 

function. This function readily reads the data into 

numpy arrays. We read in a total of 2 files: the 

multi-spectral image (the training image), the 

Bangalore built-up image (the training label). We 

observed that it is a 3D numpy array, but for 

training the model we need a 2D numpy array 

(pixel, corresponding band values). So we use the 

changeDimension() to perform the necessary 

transformation. 

The next stage of the pre-processing step includes 

the splitting of data into testing and training sets 

and normalizing them. 

 

Then we define the structure of our ANN model. 

Here we have used the Keras library to implement 

the model. 

model = keras.Sequential([ 

    keras.layers.Flatten(input_shape=(1, nBands)), 

    keras.layers.Dense(14, activation='relu'), 

    keras.layers.Dense(2, activation='softmax')]) 

 

model.compile(optimizer="adam", 

loss="sparse_categorical_crossentropy", 

metrics=["accuracy"]) 

 

And proceed with the training: 

model.fit(xTrain, yTrain, epochs=2) 

 

We get an accuracy of 95.88% on the training 

data . Then we make the model predict on the 

test data and found out the accuracy score to be 

95.9% . 

 

The Prediction Process: 

Landsat 5 data, the bands are by default 

not well stacked into a single geo-tif file. So first 

we have to create a single stacked geo-tif file. For 

this purpose, we have used the rasterio library.Then 

we read in the stacked tif file and perform the pre-

processing steps. For prediction, we can directly 

call the predict() function upon the testing data. 

 

This gives us the predictions. In-order to 

visualize the prediction, we have to reshape the 

prediction array to the original image shape and use 

the matplotlib.pyplot’s imshow() function. The 

output is of the following form, where the light 

areas refers to the built-up surfaces. 

 
 

IV. XGBoost: 

XGBoost is an open source library of 

highly-performance implementation of gradient 

boosted decision trees. So in short it is a decision 

tree based ensemble machine learning algorithm 

that uses a gradient boosting framework. Boosting 

is a type of ensemble technique in which models 

are trained in succession, with each new model 

being trained to correct the error made by the 

previous ones. Models are added sequentially until 

no further improvements can be made. This 

technique overcomes the possible situation of the 

other ensemble techniques (in which the models are 

trained in isolation) in which all the models end up 

making the same mistake. Gradient Boosting 

specifically is an approach in which new models 

are trained to predict the residuals/errors of the 

prior models. Gradient Boosting is a special case of 

boosting where errors are minimized by gradient 

descent algorithm. 
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Model Overview: 

The model is a XGBoost based model, that utilizes 

the given 3 bands’ information and predicts the 8 

LULC features (if present) : Buildings, Misc, Road, 

Track, Trees, Crops,Waterway, Standing water. 

Although the dataset contained annotations for 10 

classes/LULC features, we limit our model to be 

trained for 8 features only due to the 

limitations on our processing power. 

 

Dataset: 

The dataset used for training this model is from a 

Kaggle competition named DSTL 

Satellite Imagery Feature Detection [7]. The goal of 

this competition is to detect and 

classify 10 types of objects in the given regions 

(1Km x 1Km) of satellite imagery 

provided by the Defense Science and Technology 

Laboratory (DSTL). The dataset 

consists of 450 images, 25 of them have training 

labels. The satellite images are 

provided in both 3-band and 16-band formats. The 

16-band format includes Panchromatic (450-800 

nm), 8 Multispectral (red, red edge, coastal, blue, 

green, yellow, near-IR1, and near-IR2)(400 nm - 

1040 nm) and 8 SWIR (1195 nm - 2365 nm). In 

this model, the 3 bands (RGB) are utilized to train 

the model. Inside the DSTL dataset, there are a 

number of files, each serving its own purpose. 

● Grid_sizes.csv : Purpose : for scaling the 

polygons 

● Train_wkt_v4.csv : Purpose : the polygons for 

feature 

● Sample_submission.csv : Purpose : the test set 

● Three_band : 3 band images (training RGB 

images) 

 

Libraries: 

- Pandas   - XGBoost  - 

Numpy   - OpenCV (cv2) 

- Matplotlib    - Shapely 

 - Sci-kit learn              - Tifffile 

- Os     - Pickle 

 

In this case, all the required libraries are installed in 

the google colab environment by default. 

 

 

The Training Process: 

For the pre-processing step, we first 

convert the given polygons to masks with proper 

scaling. Once the masks are available for the 

training data, we divide the whole training data into 

the training and testing tests. 

Next we define the pipeline including the 

StandardScaler followed by XGBClassifier and 

then we can start training our model. This is 

represented in the following code snippet: 

clf = make_pipeline(StandardScaler(), 

xgb.XGBClassifier(nthread=-1, learning_rate = 0.1, 

n_estimators=100, tree_method='exact')) 

clf.fit(train_x, train_y) 

 

The Prediction Process: 

For the prediction purpose, we have 

defined a predict_class() function, that reads in the 

input file, reshape it, makes the predictions, and 

converts them to masks. The code snippet for this 

part is shown below: 

def predict_class(image_id, clf, threshold = 0.05): 

    ## Get test data 

    test_x, test_image_shape = 

image_to_test(image_id) 

    ## Make predictions 

    pred_y = clf.predict_proba(test_x)[:, 1] 

    ## Convert predictions to mask 

    pred_mask = pred_y.reshape(test_image_shape) 

    return pred_y,pred_mask 

 

The final output is of the following form: 
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IV. CONCLUSION 
The hardware limitation and the 

availability of training data did limit our 

exploration expedition, but still we were able to 

complete our objectives. We successfully 

implemented the models to detect land-use 

features. 

One of the major observations that we got 

from this study is that the model performed well 

with data that were similar to the training data, or 

in other words that belonged or are near to the 

training data location. This is basically due to the 

fact that the archaeological and land-use planning 

and pattern varies with location. This statement is 

true for both natural land use features as well as for 

the artificial land use features. 
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