

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 853

Land Use Feature Detection from Satellite

Imagery using Machine Learning Models

Sushil Chandra1, Udai Raj2, Rajeev Sonkar3, Ujjwal Yadav4,

Pragati Srivastava5, Deepankar Acharyya6, Prajjwal Singh7,
1
Scientist-SF, Head, CIP & DM, Remote Sensing Application Centre, Uttar Pradesh, Lucknow,

sushil.chandra@rsacup.org.in
2
Scientist-SE, Remote Sensing Application Centre, Uttar Pradesh

3
Project scientist, Remote Sensing Application Centre, Uttar Pradesh, Lucknow,

4
Project Scientist, Remote Sensing Application Centre, Uttar Pradesh, Lucknow,

5
Project Scientist, Remote Sensing Application Centre, Uttar Pradesh, Lucknow,

6
student, Tezpur University, Assam, India

7
student, Tezpur University, Assam, India

Submitted: 15-01-2022 Revised: 23-01-2022 Accepted: 26-01-2022

ABSTRACT

Land-use feature detection is one of the hot

applications of GIS (Geographic Information

System). With satellite imagery as the forefront

source of updated geographical data, we can use it

to observe the land-use feature change and keep up

with the latest changes with minimal effort and

maximum efficiency. Already, many parties have

started deriving and working on different

methodologies to achieve this goal. Some of the

approaches use the algorithms of Machine

Learning and the performance level achieved are

quite satisfactory. In this paper, we have explored

some of the Machine Learning based approaches

(Random Forest, XGBoost, U-Net, Artificial

Neural Network) for land-use feature detection. We

have used the online platform, google colab and

online storage google drive to train our model and

perform the prediction.

Keywords

Land use features, Satellite Imagery, Machine

Learning, Deep Learning, Random Forest,

XGBoost, U-Net, Artificial Neural Network(ANN).

I. INTRODUCTION
Popularity and demand for location based

applications are increasing daily. The domain of

GIS (Geographical Information System) has seen a

wide range of developments in the recent time.

With easy access to the vast amount of geo-spatial

satellite data, many new applications have now

been possible. The processes that required manual

survey and analysis of the land now can be

performed remotely and frequently with the help of

satellite data. In this paper, we have tried to put

forward some methods for one such application.

 The term “Land-use” refers to the management

and modification of natural environment or

wilderness into built environments such as

settlements and semi-natural habitats such as arable

fields, pastures, and managed woods[1]. So in-short

the land-use features refers to how a particular

piece of land is being managed or utilized. The

study of the land-use features is very important as it

helps us understand the way how the world has

been adapted to our needs and in what patterns.

This will also help us to predict any future

consequences that may take place due to our course

of actions. Based on some basic characteristics, the

land use features have been categorised into many

different categories. Some of them include :

Recreational, Agricultural, Impervious, Residential,

Commercial, etc.

In this paper, we have restrained ourselves to

detecting a limited number of land-use features due

to some of our resource constraints.

II. OBJECTIVES
The primary objective is to propose and

implement some machine learning models to detect

different land-use features and present their

performance levels. The training process requires

high-end hardware and therefore we have used the

online platform google colab (RAM :

12.72GB,GPU backend)[2] for the purpose. For

storing purposes, we have used google drive, by

linking it to the google colab platform.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 854

III. TOOLS & METHODOLOGY
Tools:

● Coding Platform : Google Colab [2]

Google Colab provides a jupyter notebook like

interface to run python scripts.

● Storage : Google Drive [3]

Methodologies :

In our study, we have explored and used

four Machine learning based approaches. These

approaches are discussed in detail in the next

section. For pre-processing and implementing the

models, we have used different libraries which are

listed along with the models in the next section.

Some of the standard libraries are pre-installed in

the google colab environment while others are

required to be manually installed at the start of the

session. The installation and all the relevant points

has been covered and explained in the following

sections.

NOTE: The full code for the implementation of the

models are not mentioned in this paper. But the

links for the code are provided in the corresponding

sections and some code snippets are mentioned

along with their explanation.

Model Concept and Architecture :

This section of the paper aims at providing a

conceptual view to the readers regarding the model

architectures that are going to be used for land-use

feature detection.

I. The U-Net Architecture:

The U-Net architecture was first designed

and applied in the year 2015 to process biomedical

images [5]. The model performed semantic

segmentation on the bio-medical images, localizing

the area of abnormality. But this network

architecture didn’t remain exclusive to the

biomedical field only. Basically it is an image

segmentation model, i.e. the model group together

the pixels that have similar attributes[4]. It creates a

pixel-wise mask for each object present in the input

image. In a way, we can say that the model

performs classification on every pixel of the input.

Currently, U-Net is counted among the best models

for semantic segmentation and is commonly used

on satellite images.

Some of the basic characteristics of the model are:

● The input and the output shape of the image

remains the same.

● The architecture is of U-shape and is

symmetric (this point will be clarified in the

later part of this section).

● The network is strong enough to predict well

based on even few data sets by using excessive

data augmentation techniques.

Diving deep into the architecture, below is a

diagrammatic representation of the U-Net

architecture. The U-Net is a Fully Convolutional

architecture, i.e. there are no dense/fully connected

layers in the model architecture.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 855

The above diagram shows the model’s

basic foundation. As can be clearly seen, the U

shape of the network and hence the name, U-Net.

The architecture is fully symmetrical and can be

divided into 2 parts: the contracting path and the

expanding path. The left part of the model, also

known as the contracting path is responsible for

feature extraction from the input. The left part is

constituted by the general convolution process and

max pooling. Whereas the right part of the network

also known as the expanding path is constituted by

a number of upsampling processes (transposed 2d

convolutions) and convolution layers. The right

part of the network makes sure that once the

features are identified by the left part of the

network, it is scaled up to the original input size.

The contracting and the expanding paths are also

connected via the skip connections. These skip

connections help in preserving the shape data of

different objects present in the image. The network

combines information from the

downsampling/contraction path with the contextual

information in the upsampling/expanding path to

finally obtain a general information combining

localization and context, which is necessary to

predict a good segmentation map.

Model Overview:

This U-Net based model takes in a 3 bands (RGB)

input and outputs a binary mask

localizing the buildings in the image.

Dataset:
The dataset contains a set of aerial images.

These images were collected with the help of

drones and are available in png format.

Corresponding to every aerial image, there is a

binary mask file in the label folder that highlights

the buildings present in the image. This dataset that

we have used for training the model is not satellite

data but rather a colored aerial image. But we were

still able to predict on the satellite images

considering only the RGB bands.

Libraries:

- Numpy - Rasterio -

Matplotlib - Os

- Skimage - Fastai

All the libraries are installed in the google

colab environment by default except the rasterio

library. This can be installed by executing the

following command :

!pip install rasterio

The Training Process:

The whole process of training the model

can be divided into several stages. The first stage is

the pre-processing stage. In the pre-processing

stage, we split the whole dataset into training and

testing data sets and apply data augmentation

operations on it.

In the next stage, we define the model and

start the training. For this model, we have used the

fastai library. The U-Net model is already

implemented in fastai library and we can also

define the architecture on which the U-Net

architecture will be based on.

learn = unet_learner(data, models.resnet34,

metrics=metrics)

This creates a unet architecture based on the resnet

model. For the metrics part, we can define our own

metrics or use predefined functions.

For training the model, we will use the

fit_one_cycle() function. This function uses large,

cyclical learning rates to train models significantly

quicker with higher accuracy. When training Deep

Learning models with Fastai it is recommended to

use the fit_one_cycle() method, due to its better

performance in speed and accuracy, over the fit()

method.Instead of using a fixed, or a decreasing

learning rate, the CLR method allows learning rate

to continuously oscillate between reasonable

minimum and maximum bounds.

learn.fit_one_cycle(13, max_lr=lr,

 callbacks=[

 SaveModelCallback(learn,

 monitor='dice',

 mode='max',

 name='20190108-rn34unet-comboloss-alldata-

512-best')

])

The Prediction Process:

The process of prediction follows a similar

sequence of stages as in the training process. For

the pre-processing part, we divide the whole input

into tiles of size of the UNet input layer.The

prediction will be performed on the tiles and the

prediction output is stitched together.

The prediction is performed by the following

function:

def get_pred(learn, tile):

 t_img = Image(pil2tensor(tile,np.float32))

 outputs = learn.predict(t_img)

 im = (outputs[2][1]).numpy()

 return im

The final prediction when overlaid upon the input

gives the following output:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 856

II. Random Forest:

Random forest is a type of supervised

learning algorithm. It is an ensemble of decision

trees, usually trained with the bagging method (the

general idea of the bagging method is that a

combination of learning models increases the

overall accuracy of the result). Random forests are

an ensemble learning method for classification,

regression, and other tasks that operate by

constructing a multitude of decision trees and each

individual tree outputs a class prediction and the

class with the most votes. The key in the model of

random forests is the low correlation between the

individual constituent decision tree models. This

ensures that the trees protect each other from

individual errors. The Bagging (Bootstrap

Aggregation) process ensures that the models are

trained on different sets of data which leads to

diversification of each individual constituent

model. Along with different training data sets,

feature randomness is also ensured (trees use

different features to make

decisions).

Model Overview:

The model is based on the random forest

algorithm. It takes in a 5 band (B1, B2, B3, B4, B5

of Landsat 8 data) input and outputs the vegetation

cover label for the input data. The output labels for

this model are classified into the 5 classes : No

Vegetation, Bare Area, Low Vegetation, Moderate

Vegetation, High Vegetation.

Dataset:

The dataset to train this model was prepared by us.

We used the concept of NDVI

(Normalised Difference Vegetation Index)

to get the vegetation cover labels. For Landsat 8

data, NDVI is calculated using the band 5 (Near

Infrared Band) and band 4 (Red band). Once we

calculated the NDVI for each pixel, we binned the

NDVI values into 5 bins. The NDVI values only

ranges from 0 to +1 but we included the infinity

values, since we replaced the missing data with

large numeric values.So we downloaded the

Landsat 8 data and performed the above process to

get the labelled training data from the original data.

Libraries:

- Os - Numpy

 - Matplotlib

- Glob - Sci-kit learn (Sklearn) -

Earthpy

- Pickle - Rasterio

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 857

All the required libraries are installed in the google

colab environment by default, only the earthpy and

rasterio libraries are needed to be manually

installed at the start of the session by executing the

following commands:

!pip install earthpy

!pip install rasterio

The Training Process:

For the implementation of this model, we

have to first construct the training data. We

have used the concept of NDVI to label the data.

The Earthpy library provides a number of useful

functionalities to do the processing. First we get the

Landsat 8 data. The Earthpy library provides a

function to do that. Then we list out the paths of the

geo-tif files (for the individual bands) and stack

them into a single unit. We have replaced the

missing data fields with -9999.

arr_st, meta = es.stack(list1, nodata=-9999)

Now the NDVI is calculated using the band 4 (the

red band) and band 5 (the near

infra-red band):

Then we categorised the ndvi values using the

process of binning. All the steps till now constitute

the data preparation part.

Next we split the data into training and

testing sets and train the model. For selecting the

number of estimators for our model, we have

plotted the oob score v/s number of estimators

graph. And from the graph we get an optimal

outcome at a number of estimators around 200.

Then we train our model using the following set of

code:

Initialize our model with 200 trees

rf = RandomForestClassifier(n_estimators=200,

oob_score=True)

Fit our model to training data

rf.fit(X_train[:800000], y_train[:800000])

The Prediction Process:

So for the prediction, we load the geo-tif files and

we stack them and reshape them. The prediction is

performed using the following code snippet:

 class_prediction = rf.predict(x_test01)

The output of the model is of the following form:

III. Artificial Neural Network:

Artificial neural networks/neural

networks/feed-forward networks are a

system/network of computing units connected

together, arranged in a layer. The computing units

constituting the neural network are known as

neurons. And the connections between the neurons

are characterized by a weight value. During the

training of the model, the weight values are

updated such as to reach an optimal configuration

such that the difference between the model output

and the actual result is as small as possible. This is

achieved via various optimization algorithms such

as backpropagation. Here in the above figure, we

can see that every neuron of the previous layer is

connected to each neuron of the next layer. Such a

type of configuration is called a fully connected

layer or a dense layer. There are other types of

layers available such as a convolutional layer that

performs the convolutional operation on the input

or a max-pooling layer that performs the

downsampling operation. It totally depends upon

the designer as well as the objective, the model is

trying to achieve.

Model Overview:

This model takes in a satellite image and

identifies the built-up surfaces. By built-up

surfaces, we refer to the part of the earth’s surface

that is covered by man-made/artificial surfaces.

Dataset:

The Dataset is a labelled tif file. It is

Landsat 5 data containing information from the 6

bands (B1, B2, B3, B4, B5, B6, B7). The data was

annotated for the built-up areas. For the testing

part, we have the Landsat 5 data.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 858

Libraries:

- Pyrsgis - Numpy

 - Tensorflow (Keras)

- Sci-kit learn (Sklearn) - Raterio

 - Matplotlib

- Glob - Os

All the required libraries are installed in the google

colab environment by default, only the pyrsgis and

rasterio libraries are needed to be manually

installed at the start of the session by executing the

following commands:

!pip install pyrsgis

!pip install rasterio

The Training Process:

The purpose of the pre-processing step is

to read in the raw Landsat 5 band data and format it

into numpy arrays, which are easy to manipulate

and process. In our program, we have used the

pyrsgis library to handle the pre-processing

operations during the training phase. So, first we

read in the tif files using the pyrsgis’s raster.read()

function. This function readily reads the data into

numpy arrays. We read in a total of 2 files: the

multi-spectral image (the training image), the

Bangalore built-up image (the training label). We

observed that it is a 3D numpy array, but for

training the model we need a 2D numpy array

(pixel, corresponding band values). So we use the

changeDimension() to perform the necessary

transformation.

The next stage of the pre-processing step includes

the splitting of data into testing and training sets

and normalizing them.

Then we define the structure of our ANN model.

Here we have used the Keras library to implement

the model.

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(1, nBands)),

 keras.layers.Dense(14, activation='relu'),

 keras.layers.Dense(2, activation='softmax')])

model.compile(optimizer="adam",

loss="sparse_categorical_crossentropy",

metrics=["accuracy"])

And proceed with the training:

model.fit(xTrain, yTrain, epochs=2)

We get an accuracy of 95.88% on the training

data . Then we make the model predict on the

test data and found out the accuracy score to be

95.9% .

The Prediction Process:

Landsat 5 data, the bands are by default

not well stacked into a single geo-tif file. So first

we have to create a single stacked geo-tif file. For

this purpose, we have used the rasterio library.Then

we read in the stacked tif file and perform the pre-

processing steps. For prediction, we can directly

call the predict() function upon the testing data.

This gives us the predictions. In-order to

visualize the prediction, we have to reshape the

prediction array to the original image shape and use

the matplotlib.pyplot’s imshow() function. The

output is of the following form, where the light

areas refers to the built-up surfaces.

IV. XGBoost:

XGBoost is an open source library of

highly-performance implementation of gradient

boosted decision trees. So in short it is a decision

tree based ensemble machine learning algorithm

that uses a gradient boosting framework. Boosting

is a type of ensemble technique in which models

are trained in succession, with each new model

being trained to correct the error made by the

previous ones. Models are added sequentially until

no further improvements can be made. This

technique overcomes the possible situation of the

other ensemble techniques (in which the models are

trained in isolation) in which all the models end up

making the same mistake. Gradient Boosting

specifically is an approach in which new models

are trained to predict the residuals/errors of the

prior models. Gradient Boosting is a special case of

boosting where errors are minimized by gradient

descent algorithm.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 859

Model Overview:

The model is a XGBoost based model, that utilizes

the given 3 bands’ information and predicts the 8

LULC features (if present) : Buildings, Misc, Road,

Track, Trees, Crops,Waterway, Standing water.

Although the dataset contained annotations for 10

classes/LULC features, we limit our model to be

trained for 8 features only due to the

limitations on our processing power.

Dataset:

The dataset used for training this model is from a

Kaggle competition named DSTL

Satellite Imagery Feature Detection [7]. The goal of

this competition is to detect and

classify 10 types of objects in the given regions

(1Km x 1Km) of satellite imagery

provided by the Defense Science and Technology

Laboratory (DSTL). The dataset

consists of 450 images, 25 of them have training

labels. The satellite images are

provided in both 3-band and 16-band formats. The

16-band format includes Panchromatic (450-800

nm), 8 Multispectral (red, red edge, coastal, blue,

green, yellow, near-IR1, and near-IR2)(400 nm -

1040 nm) and 8 SWIR (1195 nm - 2365 nm). In

this model, the 3 bands (RGB) are utilized to train

the model. Inside the DSTL dataset, there are a

number of files, each serving its own purpose.

● Grid_sizes.csv : Purpose : for scaling the

polygons

● Train_wkt_v4.csv : Purpose : the polygons for

feature

● Sample_submission.csv : Purpose : the test set

● Three_band : 3 band images (training RGB

images)

Libraries:

- Pandas - XGBoost -

Numpy - OpenCV (cv2)

- Matplotlib - Shapely

 - Sci-kit learn - Tifffile

- Os - Pickle

In this case, all the required libraries are installed in

the google colab environment by default.

The Training Process:

For the pre-processing step, we first

convert the given polygons to masks with proper

scaling. Once the masks are available for the

training data, we divide the whole training data into

the training and testing tests.

Next we define the pipeline including the

StandardScaler followed by XGBClassifier and

then we can start training our model. This is

represented in the following code snippet:

clf = make_pipeline(StandardScaler(),

xgb.XGBClassifier(nthread=-1, learning_rate = 0.1,

n_estimators=100, tree_method='exact'))

clf.fit(train_x, train_y)

The Prediction Process:

For the prediction purpose, we have

defined a predict_class() function, that reads in the

input file, reshape it, makes the predictions, and

converts them to masks. The code snippet for this

part is shown below:

def predict_class(image_id, clf, threshold = 0.05):

 ## Get test data

 test_x, test_image_shape =

image_to_test(image_id)

 ## Make predictions

 pred_y = clf.predict_proba(test_x)[:, 1]

 ## Convert predictions to mask

 pred_mask = pred_y.reshape(test_image_shape)

 return pred_y,pred_mask

The final output is of the following form:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 1 Jan 2022, pp: 853-860 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0401853860 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 860

IV. CONCLUSION
The hardware limitation and the

availability of training data did limit our

exploration expedition, but still we were able to

complete our objectives. We successfully

implemented the models to detect land-use

features.

One of the major observations that we got

from this study is that the model performed well

with data that were similar to the training data, or

in other words that belonged or are near to the

training data location. This is basically due to the

fact that the archaeological and land-use planning

and pattern varies with location. This statement is

true for both natural land use features as well as for

the artificial land use features.

REFERENCES
[1]. https://en.wikipedia.org/wiki/Land_use

[2]. https://colab.research.google.com/

[3]. https://www.google.com/intl/en_in/drive/

[4]. https://www.analyticsvidhya.com/blog/2019/

04/introduction-image-segmentation-

techniques-python/

[5]. https://arxiv.org/abs/1505.04597

[6]. https://towardsdatascience.com/unet-line-by-

line-explanation-9b191c76baf5

[7]. https://www.kaggle.com/c/dstl-satellite-

imagery-feature-detection

[8]. https://www.fast.ai/about/

[9]. https://keras.io

[10]. https://en.wikipedia.org/wiki/Normalized_di

fference_vegetation_index#:~:text=The%20

normalized%20difference%20vegetation%2

0index,observed%20contains%20live%20gr

een%20vegetation.

[11]. https://www.usgs.gov/core-science-

systems/nli/landsat/landsat-8

[12]. https://www.usgs.gov/core-science-

systems/nli/landsat/landsat-5?qt-

science_support_page_related_con=0#

[13]. https://earthpy.readthedocs.io/en/latest/get-

started.html

[14]. https://github.com/PratyushTripathy/pyrsgis/

releases

[15]. https://rasterio.readthedocs.io/en/latest/

https://en.wikipedia.org/wiki/Land_use
https://colab.research.google.com/
https://www.google.com/intl/en_in/drive/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/
https://arxiv.org/abs/1505.04597
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.fast.ai/about/
https://keras.io/
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index#:~:text=The%20normalized%20difference%20vegetation%20index,observed%20contains%20live%20green%20vegetation
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index#:~:text=The%20normalized%20difference%20vegetation%20index,observed%20contains%20live%20green%20vegetation
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index#:~:text=The%20normalized%20difference%20vegetation%20index,observed%20contains%20live%20green%20vegetation
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index#:~:text=The%20normalized%20difference%20vegetation%20index,observed%20contains%20live%20green%20vegetation
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index#:~:text=The%20normalized%20difference%20vegetation%20index,observed%20contains%20live%20green%20vegetation
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0
https://earthpy.readthedocs.io/en/latest/get-started.html
https://earthpy.readthedocs.io/en/latest/get-started.html
https://github.com/PratyushTripathy/pyrsgis/releases
https://github.com/PratyushTripathy/pyrsgis/releases

